de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Colored Maximum Variance Unfolding

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Smola AJ, Borgwardt,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83946

Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Song, L., Smola AJ, Borgwardt, K., & Gretton, A. (2008). Colored Maximum Variance Unfolding. Advances in Neural Information Processing Systems 20: 21st Annual Conference on Neural Information Processing Systems 2007, 1385-1392.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C731-C
Zusammenfassung
Maximum variance unfolding (MVU) is an effective heuristic for dimensionality reduction. It produces a low-dimensional representation of the data by maximizing the variance of their embeddings while preserving the local distances of the original data. We show that MVU also optimizes a statistical dependence measure which aims to retain the identity of individual observations under the distancepreserving constraints. This general view allows us to design "colored" variants of MVU, which produce low-dimensional representations for a given task, e.g. subject to class labels or other side information.