de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Bayesian Inference for Spiking Neuron Models with a Sparsity Prior

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83931

Gerwinn,  S
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84066

Macke,  J
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84205

Seeger,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83805

Bethge,  M
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gerwinn, S., Macke, J., Seeger, M., & Bethge, M. (2008). Bayesian Inference for Spiking Neuron Models with a Sparsity Prior. Advances in Neural Information Processing Systems 20: 21st Annual Conference on Neural Information Processing Systems 2007, 529-536.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C72F-3
Zusammenfassung
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the expectation propagation algorithm, we are able to approximate the full posterior distribution over all weights. In addition, we use a Laplacian prior to favor sparse solutions. Therefore, stimulus features that do not critically influence neural activity will be assigned zero weights and thus be effectively excluded by the model. This feature selection mechanism facilitates both the interpretation of the neuron model as well as its predictive abilities. The posterior distribution can be used to obtain confidence intervals which makes it possible to assess the statistical significance of the solution. In neural data analysis, the available amount of experimental measurements is often limited whereas the parameter space is large. In such a situation, both regularization by a sparsity prior and uncertainty estimates for the model parameters are essential. We apply our method to multi-electrode recordings of retinal ganglion cells and use our uncertainty estimate to test the statistical significance of functional couplings between neurons. Furthermore we used the sparsity of the Laplace prior to select those filters from a spike-triggered covariance analysis that are most informative about the neural response.