de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Automatic 3D Face Reconstruction from Single Images or Video

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84014

Kim,  KI
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84012

Kienzle,  W
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83815

Blanz,  V
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Breuer, P., Kim, K., Kienzle, W., Schölkopf, B., & Blanz, V. (2008). Automatic 3D Face Reconstruction from Single Images or Video. Proceedings of the 8th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2008), 1-8.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C72D-7
Zusammenfassung
This paper presents a fully automated algorithm for reconstructing a textured 3D model of a face from a single photograph or a raw video stream. The algorithm is based on a combination of Support Vector Machines (SVMs) and a Morphable Model of 3D faces. After SVM face detection, individual facial features are detected using a novel regression- and classification-based approach, and probabilistically plausible configurations of features are selected to produce a list of candidates for several facial feature positions. In the next step, the configurations of feature points are evaluated using a novel criterion that is based on a Morphable Model and a combination of linear projections. To make the algorithm robust with respect to head orientation, this process is iterated while the estimate of pose is refined. Finally, the feature points initialize a model-fitting procedure of the Morphable Model. The result is a highresolution 3D surface model.