de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On the use of information theory for the analysis of the relationship between neural and imaging signals

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84966

Panzeri,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84067

Magri,  C
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Panzeri, S., Magri, C., & Logothetis, N. (2008). On the use of information theory for the analysis of the relationship between neural and imaging signals. Magnetic Resonance Imaging, 26(7), 1015-1025. doi:10.1016/j.mri.2008.02.019.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C717-8
Abstract
Functional magnetic resonance imaging (fMRI) is a widely used method for studying the neural basis of cognition and of sensory function. A potential problem in the interpretation of fMRI data is that fMRI measures neural activity only indirectly, as a local change of deoxyhemoglobin concentration due to the metabolic demands of neural function. To build correct sensory and cognitive maps in the human brain, it is thus crucial to understand whether fMRI and neural activity convey the same type of information about external correlates. While a substantial experimental effort has been devoted to the simultaneous recordings of hemodynamic and neural signals, so far, the development of analysis methods that elucidate how neural and hemodynamic signals represent sensory information has received less attention. In this article, we critically review why the analytical framework of information theory, the mathematical theory of communication, is ideally suited to this purpose. We review the principles of information theory and explain how they could be applied to the analysis of fMRI and neural signals. We show that a critical advantage of information theory over more traditional analysis paradigms commonly used in the fMRI literature is that it can elucidate, within a single framework, whether an empirically observed correlation between neural and fMRI signals reflects either a similar stimulus tuning or a common source of variability unrelated to the external stimuli. In addition, information theory determines the extent to which these shared sources of stimulus signal and of variability lead fMRI and neural signals to convey similar information about external correlates. We then illustrate the formalism by applying it to the analysis of the information carried by different bands of the local field potential. We conclude by discussing the current methodological challenges that need to be addressed to make the information-theoretic approach more robustly applicable to the simultaneous recordings of neural and imaging data.