English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electric stimulation fMRI of the perforant pathway to the rat hippocampus

MPS-Authors
/persons/resource/persons84751

Canals,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83807

Beyerlein,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84099

Murayama,  Y
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Canals, S., Beyerlein, M., Murayama, Y., & Logothetis, N. (2008). Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magnetic Resonance Imaging, 26(7), 978-986. doi:10.1016/j.mri.2008.02.018.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C70B-4
Abstract
The hippocampal formation is a brain system that is implicated in learning and memory. The major input to the hippocampus arrives from the entorhinal cortex (EC) to the dentate gyrus (DG) through the perforant path. In the present work, we have investigated the functional properties of this connection by concomitantly applying electrophysiological techniques, deep-brain electric microstimulation and functional magnetic resonance imaging in anesthetized rats. We systematically delivered different current intensities at diverse stimulation frequencies to the perforant path while recording electrophysiological and blood-oxygenation-level-dependent (BOLD) signals. We observed a linear relationship between the current intensity used to stimulate the hippocampal formation and the amplitude and extension of the induced BOLD response. In addition, we found a frequency-dependent spatial pattern of activation. With stimulation protocols and train frequencies used for kindling, the activity strongly spreads ipsilaterall
y through the hippocampus, DG, subiculum and EC.