de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Infinite Kernel Learning

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44483

Gehler,  PV
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84113

Nowozin,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gehler, P., & Nowozin, S.(2008). Infinite Kernel Learning (178).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C6CD-D
Zusammenfassung
In this paper we consider the problem of automatically learning the kernel from general kernel classes. Specifically we build upon the Multiple Kernel Learning (MKL) framework and in particular on the work of (Argyriou, Hauser, Micchelli, Pontil, 2006). We will formulate a Semi-Infinite Program (SIP) to solve the problem and devise a new algorithm to solve it (Infinite Kernel Learning, IKL). The IKL algorithm is applicable to both the finite and infinite case and we find it to be faster and more stable than SimpleMKL (Rakotomamonjy, Bach, Canu, Grandvalet, 2007) for cases of many kernels. In the second part we present the first large scale comparison of SVMs to MKL on a variety of benchmark datasets, also comparing IKL. The results show two things: a) for many datasets there is no benefit in linearly combining kernels with MKL/IKL instead of the SVM classifier, thus the flexibility of using more than one kernel seems to be of no use, b) on some datasets IKL yields impressive increases in accuracy over SVM/MKL due to the possibility of using a largely increased kernel set. In those cases, IKL remains practical, whereas both cross-validation or standard MKL is infeasible.