de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Nonparametric Independence Tests: Space Partitioning and Kernel Approaches

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83946

Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gretton, A. (2008). Nonparametric Independence Tests: Space Partitioning and Kernel Approaches. Algorithmic Learning Theory: 19th International Conference (ALT08), 183-198.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C6C7-A
Zusammenfassung
Three simple and explicit procedures for testing the independence of two multi-dimensional random variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when the empirical distribution of the variables is restricted to finite partitions. A third test statistic is defined as a kernel-based independence measure. All tests reject the null hypothesis of independence if the test statistics become large. The large deviation and limit distribution properties of all three test statistics are given. Following from these results, distributionfree strong consistent tests of independence are derived, as are asymptotically alpha-level tests. The performance of the tests is evaluated experimentally on benchmark data.