de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning to Localize Objects with Structured Output Regression

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83816

Blaschko,  MB
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84037

Lampert,  CH
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Blaschko, M., & Lampert, C. (2008). Learning to Localize Objects with Structured Output Regression. Computer Vision: ECCV 2008, 2-15.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C6C3-1
Zusammenfassung
Sliding window classifiers are among the most successful and widely applied techniques for object localization. However, training is typically done in a way that is not specific to the localization task. First a binary classifier is trained using a sample of positive and negative examples, and this classifier is subsequently applied to multiple regions within test images. We propose instead to treat object localization in a principled way by posing it as a problem of predicting structured data: we model the problem not as binary classification, but as the prediction of the bounding box of objects located in images. The use of a joint-kernel framework allows us to formulate the training procedure as a generalization of an SVM, which can be solved efficiently. We further improve computational efficiency by using a branch-and-bound strategy for localization during both training and testing. Experimental evaluation on the PASCAL VOC and TU Darmstadt datasets show that the structured training procedure improves pe rformance over binary training as well as the best previously published scores.