Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

In-vivo T1 and T2* tissue-relaxation rates of H2O17 at 16.4 Tesla

MPG-Autoren
/persons/resource/persons84317

Wiesner,  HM
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83793

Balla,  DZ
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84269

Uludag,  K
Former Department MRZ, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wiesner, H., Balla, D., Pohmann, R., Chen, W., Ugurbil, K., & Uludag, K. (2008). In-vivo T1 and T2* tissue-relaxation rates of H2O17 at 16.4 Tesla. Poster presented at ISMRM Workshop on High-Field Systems and Applications 2008: "Whats special about 7T+?", Toronto, Canada.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C68D-C
Zusammenfassung
The measurement of cerebral metabolic rate of oxygen (CMRO2) via direct NMR detection of the stable oxygen
isotope 17O is a promising tool to study alterations in brain activity and pathology. Due to the low natural
abundance of 0.037 H2O17, optimized acquisition parameters are crucial for 17O-weigthed MRI of metabolically
produced cerebral water. It has been suggested that signal-to-noise ratio increases almost quadratically with B0
due to field-independent quadrupolar interactions of 17O. Thus, in comparison to studies at lower field strengths the increased magnetization available at 16.4 T allows an enhanced spatial resolution and thus for the first time a tissue-specific determination of 17O relaxation.