de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

The CyberWalk Platform: Human-Machine Interaction Enabling Unconstrained Walking through VR

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84174

Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84228

Souman,  JL
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83906

Mattone R, Luca AD, Ernst,  MO
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Robuffo Giordano, P., Souman, J., Mattone R, Luca AD, Ernst, M., & Bülthoff, H. (2008). The CyberWalk Platform: Human-Machine Interaction Enabling Unconstrained Walking through VR. Talk presented at First Workshop for Young Researchers on Human-friendly robotics. Napoli, Italy.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C689-3
Abstract
In recent years, Virtual Reality (VR) has become increasingly realistic and immersive. Both the visual and auditory rendering of virtual environments have been improved significantly, thanks to developments in both hardware and software. In contrast, the possibilities for physical navigation through virtual environments (VE) are still relatively rudimentary. Most commonly, users can ‘move’ through highfidelity virtual environments using a mouse or a joystick. Of course, the most natural way to navigate through VR would be to walk. For small scale virtual environments one can simply walk within a confined space. The VE can be presented by a cave-like projection system, or by means of a head-mounted display combined with head-tracking. For larger VEs, however, this quickly becomes impractical or even impossible.