Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Variational Bayesian Model Selection in Linear Gaussian State-Space based Models

MPG-Autoren
/persons/resource/persons83858

Chiappa,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chiappa, S. (2008). Variational Bayesian Model Selection in Linear Gaussian State-Space based Models. Poster presented at International Workshop on Flexible Modelling: Smoothing and Robustness (FMSR 2008), Leuven, Belgium.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C683-F
Zusammenfassung
We describe an ecient variational Bayesian approximation scheme for model structure selec- tion in Linear Gaussian State-Space based Models (LGSSMs) (also known as Linear Dynamical Systems), which include LGSSMs, mixtures of LGSSMs and switching LGSSMs. In a Bayesian approach the model parameters are considered as random variables and inte- grated out yielding the marginal likelihood of the data. By using appropriate parameter prior distributions, we enforce a sparse parametrization, i.e. we bias the model to select the smallest set of parameters that explains the data well. This enables us to perform model structure se- lection, i.e. to determine an appropriate number of hidden variables, mixture components and switching variables, based on the Occams razor principle. In contrast to other approaches, such as Bayesian Information Criterion-based approaches which need to train a separate model for each possible model structure, in our approach the selection is performed within a single model. This way the computational overhead of training a large number of models with dierent struc- tures is avoided. The model specication and subsequent inference and training pose some considerable chal- lenges due to intractability issues. We describe how these may be addressed using a variational approximation, in which the problem is formulated such that ecient inference methods can be used. As an application example, we show that our approach can be used to identify dynami- cally similar segments of motions underlying multidimensional time-series generated from hu- man video recordings, without using any prior knowledge on the number of segment-types and segment boundaries.