Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Using spikes and local field potentials to reveal computational networks in monkey cortex

MPG-Autoren
/persons/resource/persons84110

Nielsen,  KJ
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84154

Rainer,  G
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nielsen, K., & Rainer, G. (2008). Using spikes and local field potentials to reveal computational networks in monkey cortex. In C. Hölscher, & M. Munk (Eds.), Information processing by neuronal populations (pp. 350-362). Oxford, UK: Oxford University Press.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-C66D-3
Zusammenfassung
Traditionally, neurophysiological investigations in awake non-human primates have largely focused on the study of single-unit activity (SUA), recorded extracellularly in behaving animals using microelectrodes. The general aim of these studies has been to uncover the neural basis of cognition and action by elucidating the relation between brain activity and behavior. This is true for studies in sensory systems such as the visual system, where investigators are interested in how SUA covaries with aspects of visually presented stimuli, as well as for studies in the motor system where SUA covariation with movement targets and dynamics are investigated. In addition to these SUA studies, there has been increasing interest in the local field potential (LFP), a signal that reflects aggregate activity across populations of neurons near the tip of the microelectrode. In this chapter, we will describe recent progress in our understanding of brain function in awake behaving monkeys using LFP recordings. We will show that the combination of recording the activity of single neurons and local populations simultaneously offers a particularly promising way to gain insight into cortical brain mechanisms underlying cognition and memory.