de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation?

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83895

Eschenko,  O
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Eschenko, O. (2008). Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation? Cerebral Cortex, 18(11), 2596-2603. doi:10.1093/cercor/bhn020.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C659-F
Abstract
Memory consolidation during sleep is regaining attention due to a wave of recent reports of memory improvements after sleep or deficits after sleep disturbance. Neuromodulators have been proposed as possible players in this putative off-line memory processing, without much experimental evidence. We recorded neuronal activity in the rat noradrenergic nucleus locus coeruleus (LC) using chronically implanted movable microelectrodes while monitoring the behavioral state via electrocorticogram and online video recording. Extracellular recordings of physiologically identified noradrenergic neurons of LC were made in freely behaving rats for 3 h before and after olfactory discrimination learning. On subsequent days, if LC recording remained stable, additional learning sessions were made within the olfactory discrimination protocol, including extinction, reversals, learning new odors. Contrary to the long-standing dogma about the quiescence of noradrenergic neurons of LC, we found a transient increase in LC activity in trained rats during slow wave sleep (SWS) 2 h after learning. The discovery of learning-dependent engagement of LC neurons during SWS encourages exploration of brain stem-cortical interaction during this delayed phase of memory consolidation and should bring new insights into mechanisms underlying memory formation.