English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

New Projected Quasi-Newton Methods with Applications

MPS-Authors
/persons/resource/persons76142

Sra,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sra, S. (2008). New Projected Quasi-Newton Methods with Applications. Talk presented at Microsoft Research Tech-talk. Redmond, WA, USA. 2008-12.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C645-C
Abstract
Box-constrained convex optimization problems are central to several
applications in a variety of fields such as statistics, psychometrics,
signal processing, medical imaging, and machine learning. Two fundamental
examples are the non-negative least squares (NNLS) problem and the
non-negative Kullback-Leibler (NNKL) divergence minimization problem. The
non-negativity constraints are usually based on an underlying physical
restriction, for e.g., when dealing with applications in astronomy,
tomography, statistical estimation, or image restoration, the underlying
parameters represent physical quantities such as concentration, weight,
intensity, or frequency counts and are therefore only interpretable with
non-negative values. Several modern optimization methods can be
inefficient for simple problems
such as NNLS and NNKL as they are really designed to handle far more
general and complex problems.
In this work we develop two simple quasi-Newton methods for solving
box-constrained
(differentiable) convex optimization problems that utilize the well-known
BFGS and limited memory BFGS updates. We position our method between
projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982)
methods, and prove its convergence under a simple Armijo step-size rule. We
illustrate our method by showing applications to: Image deblurring, Positron
Emission Tomography (PET) image reconstruction, and Non-negative Matrix
Approximation (NMA). On medium sized data we observe performance competitive
to established procedures, while for larger data the results are even
better.