de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Metropolis Algorithms for Representative Subgraph Sampling

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Kriegel H-P, Borgwardt,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hübler, C., Kriegel H-P, Borgwardt, K., & Ghahramani, Z. (2008). Metropolis Algorithms for Representative Subgraph Sampling. In Eighth IEEE International Conference on Data Mining (ICDM '08) (pp. 283-292). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C637-C
Zusammenfassung
While data mining in chemoinformatics studied graph data with dozens of nodes, systems biology and the Internet are now generating graph data with thousands and millions of nodes. Hence data mining faces the algorithmic challenge of coping with this significant increase in graph size: Classic algorithms for data analysis are often too expensive and too slow on large graphs. While one strategy to overcome this problem is to design novel efficient algorithms, the other is to 'reduce' the size of the large graph by sampling. This is the scope of this paper: We will present novel Metropolis algorithms for sampling a 'representative' small subgraph from the original large graph, with 'representative' describing the requirement that the sample shall preserve crucial graph properties of the original graph. In our experiments, we improve over the pioneering work of Leskovec and Faloutsos (KDD 2006), by producing representative subgraph samples that are both smaller and of higher quality than those produced by other methods from the literature.