# Item

ITEM ACTIONSEXPORT

Released

Conference Paper

#### Frequent Subgraph Retrieval in Geometric Graph Databases

##### MPS-Authors

##### Locator

There are no locators available

##### Fulltext (public)

There are no public fulltexts available

##### Supplementary Material (public)

There is no public supplementary material available

##### Citation

Nowozin, S., & Tsuda, K. (2008). Frequent Subgraph Retrieval in Geometric Graph
Databases.* Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008),*
953-958.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C62F-F

##### Abstract

Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric epsilon-subgraphs under the entire class of rigid geometric transformations in a database. By using geometricepsilon-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is lar
ger than for non-geometric graph mining,the total time is within a reasonable level even for small minimum support.