de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Predictive Model for Imitation Learning in Partially Observable Environments

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83823

Boularias,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Boularias, A. (2008). A Predictive Model for Imitation Learning in Partially Observable Environments. Proceedings of the Seventh International Conference on Machine Learning and Applications (ICMLA 2008), 83-90.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C629-C
Zusammenfassung
Learning by imitation has shown to be a powerful paradigm for automated learning in autonomous robots. This paper presents a general framework of learning by imitation for stochastic and partially observable systems. The model is a Predictive Policy Representation (PPR) whose goal is to represent the teacher‘s policies without any reference to states. The model is fully described in terms of actions and observations only. We show how this model can efficiently learn the personal behavior and preferences of an assistive robot user.