de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Bayesian Approach to Switching Linear Gaussian State-Space Models for Unsupervised Time-Series Segmentation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83858

Chiappa,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chiappa, S. (2008). A Bayesian Approach to Switching Linear Gaussian State-Space Models for Unsupervised Time-Series Segmentation. Proceedings of the 7th International Conference on Machine Learning and Applications (ICMLA 2008), 3-9.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C627-0
Zusammenfassung
Time-series segmentation in the fully unsupervised scenario in which the number of segment-types is a priori unknown is a fundamental problem in many applications. We propose a Bayesian approach to a segmentation model based on the switching linear Gaussian state-space model that enforces a sparse parametrization, such as to use only a small number of a priori available different dynamics to explain the data. This enables us to estimate the number of segment-types within the model, in contrast to previous non-Bayesian approaches where training and comparing several separate models was required. As the resulting model is computationally intractable, we introduce a variational approximation where a reformulation of the problem enables the use of efficient inference algorithms.