de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Prototype Classification: Insights from Machine Learning

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83943

Graf,  ABA
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83824

Bousquet,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84153

Rätsch,  G
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Graf, A., Bousquet, O., Rätsch, G., & Schölkopf, B. (2009). Prototype Classification: Insights from Machine Learning. Neural Computation, 21(1), 272-300. doi:10.1162/neco.2009.01-07-443.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C5ED-D
Zusammenfassung
We shed light on the discrimination between patterns belonging to two different classes by casting this decoding problem into a generalized prototype framework. The discrimination process is then separated into two stages: a projection stage that reduces the dimensionality of the data by projecting it on a line and a threshold stage where the distributions of the projected patterns of both classes are separated. For this, we extend the popular mean-of-class prototype classification using algorithms from machine learning that satisfy a set of invariance properties. We report a simple yet general approach to express different types of linear classification algorithms in an identical and easy-to-visualize formal framework using generalized prototypes where these prototypes are used to express the normal vector and offset of the hyperplane. We investigate nonmargin classifiers such as the classical prototype classifier, the Fisher classifier, and the relevance vector machine. We then study hard and soft margin cl assifiers such as the support vector machine and a boosted version of the prototype classifier. Subsequently, we relate mean-of-class prototype classification to other classification algorithms by showing that the prototype classifier is a limit of any soft margin classifier and that boosting a prototype classifier yields the support vector machine. While giving novel insights into classification per se by presenting a common and unified formalism, our generalized prototype framework also provides an efficient visualization and a principled comparison of machine learning classification.