de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Efficient Graphlet Kernels for Large Graph Comparison

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84919

Shervashidze,  N
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  KM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shervashidze, N., Vishwanathan SVN, Petri TH, Mehlhorn, K., & Borgwardt, K. (2009). Efficient Graphlet Kernels for Large Graph Comparison. Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics (AIStats 2009), 488-495.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C545-3
Zusammenfassung
State-of-the-art graph kernels do not scale to large graphs with hundreds of nodes and thousands of edges. In this article we propose to compare graphs by counting it graphlets}, ie subgraphs with k nodes where k in { 3, 4, 5 . Exhaustive enumeration of all graphlets being prohibitively expensive, we introduce two theoretically grounded speedup schemes, one based on sampling and the second one specifically designed for bounded degree graphs. In our experimental evaluation, our novel kernels allow us to efficiently compare large graphs that cannot be tackled by existing graph kernels.