de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Use of Pitch and Heave Motion Cues in a Pitch Control Task

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84644

Pool,  DM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Zaal, P., Pool, D., De Bruin J, Mulder, M., & van Paassen, M. (2009). Use of Pitch and Heave Motion Cues in a Pitch Control Task. Journal of Guidance, Control, and Dynamics, 32(2), 366-377. doi:10.2514/1.39953.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C533-D
Abstract
During pitch rotation of the aircraft, a pilot, seated in front of the aircraft center of gravity, is subjected to rotational pitch and vertical heave motion. The heave motion is a combination of the vertical motion of the aircraft center of gravity and the heave motion as a result of the pitch rotation. In a pitch tracking task, all of these cues could potentially have a positive effect on performance and control behavior, as they are all related to the aircraft pitch attitude. To improve the tuning of flight simulator motion filters, a better understanding of how these motion components are used by the pilot is required. First, the optimal use of the different motion components was evaluated using an optimal control analysis. Next, an aircraft pitch attitude control experiment was performed in the SIMONA Research Simulator, investigating the effects of pitch rotation, pitch heave, and center of gravity heave on pilot control behavior. Pilot performance significantly improved with pitch motion, with an increased crossover frequency for the disturbance open loop. The increase in performance was a result of an increased visual gain and a reduction in visual lead, allowed for by the addition of pitch motion. Pitch heave motion showed similar but smaller effects. The center of gravity heave motion, although taking up most of the simulator motion space, was found to have no significant effects on performance and control behavior.