de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Near-optimal supervised feature selection among frequent subgraphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83946

Cheng H, Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  KM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thoma, M., Cheng H, Gretton, A., Han J, Kriegel H-P, Smola AJ, Song L, Yu PS, Yan, X., & Borgwardt, K. (2009). Near-optimal supervised feature selection among frequent subgraphs. In 9th SIAM Conference on Data Mining (SDM 2009) (pp. 1076-1087). Society for Industrial and Applied Mathematics: Philadelphia, PA, USA.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C4FD-2
Zusammenfassung
Graph classification is an increasingly important step in numerous application domains, such as function prediction of molecules and proteins, computerised scene analysis, and anomaly detection in program flows. Among the various approaches proposed in the literature, graph classification based on frequent subgraphs is a popular branch: Graphs are represented as (usually binary) vectors, with components indicating whether a graph contains a particular subgraph that is frequent across the dataset. On large graphs, however, one faces the enormous problem that the number of these frequent subgraphs may grow exponentially with the size of the graphs, but only few of them possess enough discriminative power to make them useful for graph classification. Efficient and discriminative feature selection among frequent subgraphs is hence a key challenge for graph mining. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.