de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Medial Features for Superpixel Segmentation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83902

Engel,  D
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Spinello L, Triebel R, Siegwart R, Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83871

Curio,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Engel, D., Spinello L, Triebel R, Siegwart R, Bülthoff, H., & Curio, C. (2009). Medial Features for Superpixel Segmentation. In Eleventh IAPR Conference on Machine Vision Applications (MVA 2009) (pp. 248-252). Tokyo, Japan: MVA Organizing Committee.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C4F4-3
Zusammenfassung
Image segmentation plays an important role in computer vision and human scene perception. Image oversegmentation is a common technique to overcome the problem of managing the high number of pixels and the reasoning among them. Specifically, a local and coherent cluster that contains a statistically homogeneous region is denoted as a superpixel. In this paper we propose a novel algorithm that segments an image into superpixels employing a new kind of shape centered feature which serve as a seed points for image segmentation, based on Gradient Vector Flow fields (GVF) [14]. The features are located at image locations with salient symmetry. We compare our algorithm to state-of-the-art superpixel algorithms and demonstrate a performance increase on the standard Berkeley Segmentation Dataset.