English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Center-surround patterns emerge as optimal predictors for human saccade targets

MPS-Authors
/persons/resource/persons84012

Kienzle,  W
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83919

Franz,  MO
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84314

Wichmann,  FA
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kienzle, W., Franz, M., Schölkopf, B., & Wichmann, F. (2009). Center-surround patterns emerge as optimal predictors for human saccade targets. Journal of Vision, 9(5): 7, pp. 1-15. doi:10.1167/9.5.7.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C4CB-0
Abstract
The human visual system is foveated, that is, outside the central visual field resolution and acuity drop rapidly. Nonetheless much of a visual scene is perceived after only a few saccadic eye movements, suggesting an effective strategy for selecting saccade targets. It has been known for some time that local image structure at saccade targets influences the selection process. However, the question of what the most relevant visual features are is still under debate. Here we show that center-surround patterns emerge as the optimal solution for predicting saccade targets from their local image structure. The resulting model, a one-layer feed-forward network, is surprisingly simple compared to previously suggested models which assume much more complex computations such as multi-scale processing and multiple feature channels. Nevertheless, our model is equally predictive. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.