de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning object-specific grasp affordance densities

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84027

Baseski E, Popovic M, Touati Y, Krüger N, Kroemer,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84139

Piater,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Detry, R., Baseski E, Popovic M, Touati Y, Krüger N, Kroemer, O., Peters, J., & Piater, J. (2009). Learning object-specific grasp affordance densities. Proceedings of the 8th IEEE International Conference on Development and Learning (ICDL 2009), 1-7.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C489-4
Zusammenfassung
This paper addresses the issue of learning and representing object grasp affordances, i.e. object-gripper relative configurations that lead to successful grasps. The purpose of grasp affordances is to organize and store the whole knowledge that an agent has about the grasping of an object, in order to facilitate reasoning on grasping solutions and their achievability. The affordance representation consists in a continuous probability density function defined on the 6D gripper pose space-3D position and orientation-, within an object-relative reference frame. Grasp affordances are initially learned from various sources, e.g. from imitation or from visual cues, leading to grasp hypothesis densities. Grasp densities are attached to a learned 3D visual object model, and pose estimation of the visual model allows a robotic agent to execute samples from a grasp hypothesis density under various object poses. Grasp outcomes are used to learn grasp empirical densities, i.e. grasps that have been confirmed through experience. We show the result of learning grasp hypothesis densities from both imitation and visual cues, and present grasp empirical densities learned from physical experience by a robot.