de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Global Connectivity Potentials for Random Field Models

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84113

Nowozin,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84037

Lampert,  CH
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Nowozin, S., & Lampert, C. (2009). Global Connectivity Potentials for Random Field Models. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 818-825.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C47F-B
Abstract
Markov random field (MRF, CRF) models are popular in computer vision. However, in order to be computationally tractable they are limited to incorporate only local interactions and cannot model global properties, such as connectedness, which is a potentially useful high-level prior for object segmentation. In this work, we overcome this limitation by deriving a potential function that enforces the output labeling to be connected and that can naturally be used in the framework of recent MAP-MRF LP relaxations. Using techniques from polyhedral combinatorics, we show that a provably tight approximation to the MAP solution of the resulting MRF can still be found efficiently by solving a sequence of max-flow problems. The efficiency of the inference procedure also allows us to learn the parameters of a MRF with global connectivity potentials by means of a cutting plane algorithm. We experimentally evaluate our algorithm on both synthetic data and on the challenging segmentation task of the PASCAL VOC 2008 data set. We show that in both cases the addition of a connectedness prior significantly reduces the segmentation error.