de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84204

Schweikert,  G
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Widmer C, Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84153

Rätsch,  G
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schweikert, G., Widmer C, Schölkopf, B., & Rätsch, G. (2009). An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis. Advances in neural information processing systems 21: 22nd Annual Conference on Neural Information Processing Systems 2008, 1433-1440.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C46B-8
Zusammenfassung
We study the problem of domain transfer for a supervised classification task in mRNA splicing. We consider a number of recent domain transfer methods from machine learning, including some that are novel, and evaluate them on genomic sequence data from model organisms of varying evolutionary distance. We find that in cases where the organisms are not closely related, the use of domain adaptation methods can help improve classification performance.