de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Multisensory integration for perception and action in virtual environments

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Bülthoff, H. (2009). Multisensory integration for perception and action in virtual environments. Talk presented at 32nd European Conference on Visual Perception. Regensburg, Germany.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C3CB-7
Abstract
Understanding vision has always been at the centre of research in perception and cognition. Experiments on vision, however, have usually been conducted with a strong focus on perception, neglecting the fact that in most natural tasks sensory signals are not ultimately used for perception, but rather for action. The effects of the action are sensed by the sensory system, so that perception and action are complementary parts of a dynamic control system. Additionally, the human sensory system receives input from multiple senses which have to be integrated in order to solve tasks ranging from standing upright to controlling complex vehicles. In our Cybernetics research group we use psychophysical, physiological, modeling, and simulation techniques to study how cues from different sensory modalities are integrated by the brain to perceive, act in, and interact with the real world. In psychophysical studies, we could show that humans integrate multimodal sensory information often, but not always, in a statistically optimal way such that cues are weighted according to their reliability. In this talk, I will present results from our studies on multisensory integration of perception and action in both natural and simulated environments for different tasks using our latest simulator technologies, the Cyberwalk omnidirectional treadmill and the MPI Motion Simulator based on a large industrial robot arm.