de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Beyond vision: multi-sensory processing in humans and machines

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84298

Wallraven,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wallraven, C., & Bülthoff, H. (2009). Beyond vision: multi-sensory processing in humans and machines. Talk presented at Second International Workshop on Shape Perception in Human and Computer Vision (SPHCV-ECVP 2009). Regensburg, Germany.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C3C1-C
Zusammenfassung
The question of how humans learn to categorize objects and events has been at the heart of cognitive and neuroscience research for the last decades. In recent years, much work also in computer vision has focused on this topic and by now has generated multiple challenges, databases, and novel approaches. In this talk, I will argue that there is more to "vision" than "bags of words". Recent work in our lab has focused on using state-of-the-art computer graphics and simulation technology in order to advance our understanding of the role vision plays in the "ultimate cognitive system" - the human. In particular, in my talk I will discuss the need for spatio-temporal object representations, as well as why we need a notion of shape and material properties in object interpretation that goes far beyond most current computer vision approaches. Most importantly, however, I will focus on multi-modal/multi-sensory aspects of object processing as one of the key elements of learning about the world through interaction. Evi dence from several studies of haptic object processing, for example, has shown that the sense of touch is sometimes surprisingly acute in representing complex shape spaces. I will finish by showing how some of these perceptual and cognitive results can be integrated into novel, more efficient and effective vision systems.