de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84644

Pool,  DM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zaal, P., Pool, D., Chu QP, van Paassen MM, Mulder, M., & Mulder, J. (2009). Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation. Journal of Guidance, Control, and Dynamics, 32(4), 1089-1099. doi:10.2514/1.42843.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C363-2
Zusammenfassung
This paper presents a new method for estimating the parameters of multichannel pilot models that is based on maximum likelihood estimation. To cope with the inherent nonlinearity of this optimization problem, the gradientbased Gauss–Newton algorithm commonly used to optimize the likelihood function in terms of output error is complemented with a genetic algorithm. This significantly increases the probability of finding the global optimum of the optimization problem. The genetic maximum likelihood method is successfully applied to data from a recent human-in-the-loop experiment. Accurate estimates of the pilot model parameters and the remnant characteristics are obtained. Multiple simulations with increasing levels of pilot remnant are performed, using the set of parameters found from the experimental data, to investigate how the accuracy of the parameter estimate is affected by increasing remnant. It is shown that the bias in the parameter estimates is only substantial for very high levels of pilot remnant. Some adjustments to the maximum likelihood method are proposed to reduce this bias.