de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Categorizing art: Comparing humans and computers

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84298

Wallraven,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83913

Fleming,  R
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83870

Cunningham,  DW
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Wallraven, C., Fleming, R., Cunningham, D., Rigau J, Feixas, M., & Sbert, M. (2009). Categorizing art: Comparing humans and computers. Computers and Graphics, 33(4), 484-495. doi:10.1016/j.cag.2009.04.003.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C357-D
Abstract
The categorization of art (paintings, literature) into distinct styles such as Expressionism, or Surrealism has had a profound influence on how art is presented, marketed, analyzed, and historicized. Here, we present results from human and computational experiments with the goal of determining to which degree such categories can be explained by simple, low-level appearance information in the image. Following experimental methods from perceptual psychology on category formation, naive, non-expert participants were first asked to sort printouts of artworks from different art periods into categories. Converting these data into similarity data and running a multi-dimensional scaling (MDS) analysis, we found distinct categories which corresponded sometimes surprisingly well to canonical art periods. The result was cross-validated on two complementary sets of artworks for two different groups of participants showing the stability of art interpretation. The second focus of this paper was on determining how far computational algorithms would be able to capture human performance or would be able in general to separate different art categories. Using several state-of-the-art algorithms from computer vision, we found that whereas low-level appearance information can give some clues about category membership, human grouping strategies included also much higher-level concepts.