de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Object Localization with Global and Local Context Kernels

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83816

Blaschko,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84037

Lampert,  CH
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Blaschko, M., & Lampert, C. (2009). Object Localization with Global and Local Context Kernels. Proceedings of the British Machine Vision Conference 2009 (BMVC 2009), 1-11.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C313-5
Abstract
Recent research has shown that the use of contextual cues significantly improves performance in sliding window type localization systems. In this work, we propose a method that incorporates both global and local context information through appropriately defined kernel functions. In particular, we make use of a weighted combination of kernels defined over local spatial regions, as well as a global context kernel. The relative importance of the context contributions is learned automatically, and the resulting discriminant function is of a form such that localization at test time can be solved efficiently using a branch and bound optimization scheme. By specifying context directly with a kernel learning approach, we achieve high localization accuracy with a simple and efficient representation. This is in contrast to other systems that incorporate context for which expensive inference needs to be done at test time. We show experimentally on the PASCAL VOC datasets that the inclusion of context can significantly improve localization performance, provided the relative contributions of context cues are learned appropriately.