English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Control design and experimental evaluation of the 2D CyberWalk platform

MPS-Authors
/persons/resource/persons84174

Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

De Luca, A., Mattone, R., Robuffo Giordano, P., & Bülthoff, H. (2009). Control design and experimental evaluation of the 2D CyberWalk platform. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009) (pp. 5051-5058). Piscataway, NJ, USA: IEEE Service Center.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C27C-3
Abstract
The CyberWalk is a large size 2D omni-directional platform that allows unconstrained locomotion possibilities to a walking user for VR exploration. In this paper we present the motion control design for the platform, which has been developed within the homonymous European research project. The objective is to compensate the intentional motion of the user, so as to keep her/him always close to the platform center while limiting the perceptual effects due to actuation commands. The controller acts at the acceleration level, using suitable observers to estimate the unmeasurable intentional walker‘s velocity and acceleration. A moving reference position is used to limit the accelerations felt by the user in critical transients, e.g., when the walker suddenly stops motion. Experimental results are reported that show the benefit of designing separate control gains in the two orthogonal directions (lateral and sagittal) of a frame attached to the walker.