de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Organic Memristor and Bio-Inspired Information Processing

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84202

Schüz,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Erokhin, V., Schüz, A., & Fontana, M. (2010). Organic Memristor and Bio-Inspired Information Processing. International Journal of Unconventional Computing, 6(1), 15-32. Retrieved from http://www.oldcitypublishing.com/IJUC/IJUCabstracts/IJUC6.1abstracts/IJUCv6n1p15-32Erokhin.html.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C172-0
Zusammenfassung
The memristor is a circuit element whose conductance depends on its previous functioning history. Although postulated decades ago, it was actually fabricated only recently, spurring much debate and activity as to its possible applications in smart sensors and memory components in information handling systems. Recently we fabricated an organic memristor, basically a heterojunction between a conducting polymer (polyaniline) and a solid electrolyte (Li-doped polyethylene oxide). In this paper we describe the peculiar behavior of this device, due to the electrochemical control through ion flux and redox reactions in the conducting polymer, which lead to properties such as non linearity and memory. In special conditions, this organic memristor generates current auto-oscillation in fixed voltage conditions. Using these features we have fabricated several types of circuits which could be trained using the appropriate external stimuli, demonstrating supervised and unsupervised learning. Finally, the possibility of th e formation of adaptive networks of statistically distributed self-assembled complex molecules for biologically inspired parallel information handling will be discussed.