de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Musical training induces functional plasticity in human hippocampus

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84187

Esposito F, di Salle F, Boller C, Hilti C, Habermeyer B, Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Herdener, M., Esposito F, di Salle F, Boller C, Hilti C, Habermeyer B, Scheffler, K., Wetzel S, Seifritz, E., & Cattapan-Ludewig, K. (2010). Musical training induces functional plasticity in human hippocampus. Journal of Neuroscience, 30(4), 1377-1384. doi:10.1523/​JNEUROSCI.4513-09.2010.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C16E-B
Zusammenfassung
Training can change the functional and structural organization of the brain, and animal models demonstrate that the hippocampus formation is particularly susceptible to training-related neuroplasticity. In humans, however, direct evidence for functional plasticity of the adult hippocampus induced by training is still missing. Here, we used musicians' brains as a model to test for plastic capabilities of the adult human hippocampus. By using functional magnetic resonance imaging optimized for the investigation of auditory processing, we examined brain responses induced by temporal novelty in otherwise isochronous sound patterns in musicians and musical laypersons, since the hippocampus has been suggested previously to be crucially involved in various forms of novelty detection. In the first cross-sectional experiment, we identified enhanced neural responses to temporal novelty in the anterior left hippocampus of professional musicians, pointing to expertise-related differences in hippocampal processing. In the second experiment, we evaluated neural responses to acoustic temporal novelty in a longitudinal approach to disentangle training-related changes from predispositional factors. For this purpose, we examined an independent sample of music academy students before and after two semesters of intensive aural skills training. After this training period, hippocampal responses to temporal novelty in sounds were enhanced in musical students, and statistical interaction analysis of brain activity changes over time suggests training rather than predisposition effects. Thus, our results provide direct evidence for functional changes of the adult hippocampus in humans related to musical training.