de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Interleaved TMS/CASL: Comparison of different rTMS protocols

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84089

Moisa,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84269

Uludag,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84257

Thielscher,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Moisa, M., Pohmann, R., Uludag, K., & Thielscher, A. (2010). Interleaved TMS/CASL: Comparison of different rTMS protocols. NeuroImage, 49(1), 612-620. doi:10.1016/j.neuroimage.2009.07.010.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C16A-4
Zusammenfassung
Continuous Arterial Spin Labeling (CASL) offers the possibility to quantitatively measure the regional cerebral blood flow (rCBF). We demonstrate, for the first time, the feasibility of interleaving Transcranial Magnetic Stimulation (TMS) with CASL at 3 T. Two different repetitive TMS (rTMS) protocols were applied to the motor cortex in 10 subjects and the effect on rCBF was measured using a CASL sequence with separate RF coils for labeling the inflowing blood. Each subject was investigated, using a block design, under 7 different conditions: continuous 2 Hz rTMS (3 intensities: 100, 110 and 120 resting motor threshold [MT]), short 10 Hz rTMS trains at 110 MT (8 pulses per train; 3 different numbers of trains per block with 2, 4 and 12 s intervals between trains) and volitional movement (acoustically triggered by 50 MT stimuli). We show robust rCBF increases in motor and premotor areas due to rTMS, even at the lowest stimulation intensity of 100 MT. RCBF exhibited a linear positive dependency on stimula tion intensity (for continuous 2 Hz rTMS) and the number of 10 Hz trains in the stimulated M1/S1 as well as in premotor and supplementary motor areas. Interestingly, the 2 different rTMS protocols yielded markedly different rCBF activation time courses, which did not correlate with the electromyographic recordings of the muscle responses. In future, this novel combination of TMS with ASL will offer the possibility to investigate the immediate and after-effects of rTMS stimulation on rCBF, which previously was only possible using PET.