de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Improved neuronal tract-tracing with stable biocytin-derived neuroimaging agents

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84084

Mishra,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83883

Dhingra,  K
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84202

Schüz,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84751

Canals,  S
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mishra, A., Dhingra, K., Schüz, A., Logothetis, N., & Canals, S. (2010). Improved neuronal tract-tracing with stable biocytin-derived neuroimaging agents. ACS Chemical Neuroscience, 1(2), 129-138. doi:10.1021/cn900010d.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C130-2
Zusammenfassung
One of the main characteristics of brains is their profuse connectivity at different spatial scales. Understanding brain function evidently first requires a comprehensive description of neuronal anatomical connections. Not surprisingly a large number of histological markers were developed over the years that can be used for tracing mono- or polysynaptic connections. Biocytin is a classical neuroanatomical tracer commonly used to map brain connectivity. However, the endogenous degradation of the molecule by the action of biotinidase enzymes precludes its applicability in long-term experiments and limits the quality and completeness of the rendered connections. With the aim to improve the stability of this classical tracer, two novel biocytin-derived compounds were designed and synthesized. Here we present their greatly improved stability in biological tissue along with retained capacity to function as neuronal tracers. The experiments, 24 and 96 h postinjection, demonstrated that the newly synthesized molecule s yielded more detailed and complete information about brain networks than that obtained with conventional biocytin. Preliminary results suggest that the reported molecular designs can be further diversified for use as multimodal tracers in combined MRI and optical or electron microscopy experiments.