de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Immunosuppressant neurotoxicity in rat brain models: oxidative stress and cellular metabolism

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83941

Gottschalk,  S
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Klawitter, J., Gottschalk, S., Hainz C, Leibfritz D, Christians, U., & Serkova, N. (2010). Immunosuppressant neurotoxicity in rat brain models: oxidative stress and cellular metabolism. Chemical Research in Toxicology, 23(3), 608-619. doi:10.1021/tx900351q.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C0F2-5
Abstract
Co-administration of the calcineurin inhibitor cyclosporine (CsA) and the mTOR inhibitors sirolimus (SRL) or everolimus (RAD) increases efficacy of immunosuppression after organ transplantation. Neurotoxicity of CsA is a major clinical problem. Our goal was to assess the effects of CsA, SRL and RAD on the brain cell metabolism. The studies included the comparison of immunosuppressant-mediated effects on glucose metabolism, energy production and reactive oxygen species (ROS) formation in perfused rat brain slices, primary rat astrocytes and C6-glioma cells. In brain slices and astrocytes, CsA inhibited Krebs cycle metabolism, while activating anaerobic glycolysis most likely to compensate for the inhibition of mitochondrial energy production. SRL and RAD inhibited cytosolic glycolysis, but did not cause changes in mitochondrial energy production. CsA+SRL inhibited Krebs cycle and glycolysis, thus reducing the ability of the cell to compensate for the negative effects of CsA on mitochondrial nucleoside triphosphate synthesis. In contrast to SRL at the concentrations tested, RAD reduced the CsA-induced ROS formation and antagonized CsA-induced effects on glucose and energy metabolism. Surprisingly, in C6 cells, SRL and RAD exposure resulted in high ROS concentrations without significant impairment of cell metabolism. Our results suggested that SRL enhances CsA-induced ROS formation and negative metabolic effects in brain cells, while RAD seems to antagonize the CsA effects. However, the three models showed different metabolic responses when challenged with the study drugs. In contrast to SRL, RAD enhances ROS formation in C6 glioma cells, but has only minor effects on normal rat brain tissue.