de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Machine-Learning Methods for Decoding Intentional Brain States

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83968

Hill,  NJ
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hill, N. (2010). Machine-Learning Methods for Decoding Intentional Brain States. Talk presented at Symposium "Non-Invasive Brain Computer Interfaces: Current Developments and Applications" (BIOMAG 2010). Dubrovnik, Croatia.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C0DE-8
Zusammenfassung
Brain-computer interfaces (BCI) work by making the user perform a specific mental task, such as imagining moving body parts or performing some other covert mental activity, or attending to a particular stimulus out of an array of options, in order to encode their intention into a measurable brain signal. Signal-processing and machine-learning techniques are then used to decode the measured signal to identify the encoded mental state and hence extract the useramp;amp;lsquo;s initial intention. The high-noise high-dimensional nature of brain-signals make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since “it doesnamp;amp;lsquo;t matter what classifier you use once your features are extracted.” Using examples from our own MEG and EEG experiments, Iamp;amp;lsquo;ll demonstrate how machine-learning principles can be applied in order to improve BCI performance, if they are formulated in a domain-specific way. The result is a type of data-driven analysis that is more than “just” classification, and can be used to find better feature extractors.