de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Sparse regression via a trust-region proximal method

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons76142

Sra,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, D., Sra, S., & Dhillon, I. (2010). Sparse regression via a trust-region proximal method.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C0DA-0
Zusammenfassung
We present a method for sparse regression problems. Our method is based on the nonsmooth trust-region framework that minimizes a sum of smooth convex functions and a nonsmooth convex regularizer. By employing a separable quadratic approximation to the smooth part, the method enables the use of proximity operators, which in turn allow tackling the nonsmooth part efficiently. We illustrate our method by implementing it for three important sparse regression problems. In experiments with synthetic and real-world large-scale data, our method is seen to be competitive, robust, and scalable.