de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84076

Martens,  SMM
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84047

Leiva,  JM
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Martens, S., & Leiva, J. (2010). A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller. Journal of Neural Engineering, 7(2), 1-10. doi:10.1088/1741-2560/7/2/026003.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C0A6-4
Zusammenfassung
There is a strong tendency towards discriminative approaches in brain-computer interface (BCI) research. We argue that generative model-based approaches are worth pursuing and propose a simple generative model for the visual ERP-based BCI speller which incorporates prior knowledge about the brain signals. We show that the proposed generative method needs less training data to reach a given letter prediction performance than the state of the art discriminative approaches.