de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Identifying Cause and Effect on Discrete Data using Additive Noise Models

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84134

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons75626

Janzing,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Peters, J., Janzing, D., & Schölkopf, B. (2010). Identifying Cause and Effect on Discrete Data using Additive Noise Models. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2010), 597-604.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C040-6
Abstract
Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. Recently, methods using additive noise models have been suggested to approach the case of continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work we extend the notion of additive noise models to these cases. Whenever the joint distribution P(X;Y ) admits such a model in one direction, e.g. Y = f(X) + N; N ? X, it does not admit the reversed model X = g(Y ) + ~N ; ~N ? Y as long as the model is chosen in a generic way. Based on these deliberations we propose an efficient new algorithm that is able to distinguish between cause and effect for a finite sample of discrete variables. We show that this algorithm works both on synthetic and real data sets.