de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Distributed pursuit-evasion with limited-visibility sensors via frontier-based exploration

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Durham, J., Franchi, A., & Bullo, F. (2010). Distributed pursuit-evasion with limited-visibility sensors via frontier-based exploration. In 2010 IEEE International Conference on Robotics and Automation (ICRA 2010) (pp. 3562-3568). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C03E-E
Zusammenfassung
This paper addresses a novel visibility-based pursuit-evasion problem in which a team of searchers with limited range sensors must coordinate to clear any evaders from an unknown planar environment.We present a distributed algorithm built around guaranteeing complete coverage of the frontier between cleared and contaminated areas while expanding the cleared area. Our frontier-based algorithm can guarantee detection of evaders in unknown, multiply-connected planar environments which may be non-polygonal. We also detail a method for storing and updating the global frontier between cleared and contaminated areas without building a global map or requiring global localization, which enables our algorithm to be truly distributed. We demonstrate the functionality of the algorithm through Player/Stage simulations.