de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

A simulated extracellular recording environment for the evaluation of automated electrode positioning systems and spike sorting algorithms

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83916

Franke,  F
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84098

Meier P, Natora M, Hagen E, Petersen KH, Linden H, Einevoll GT, Munk,  MH
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Franke, F., Meier P, Natora M, Hagen E, Petersen KH, Linden H, Einevoll GT, Munk, M., & Obermayer, K. (2010). A simulated extracellular recording environment for the evaluation of automated electrode positioning systems and spike sorting algorithms. Poster presented at G-Node Inaugural Symposium, Martinsried, Germany.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BFAC-A
Zusammenfassung
Extracellular recordings are a key tool to study the activity of neurons in vivo. Especially in the case of experiments with behaving animals, however, the tedious procedure of electrode placement can take a considerable amount of expensive and restricted experimental time. Furthermore, due to tissue drifts and other sources of variability in the recording setup, the position of the electrodes with respect to the neurons under study can change, causing low recording quality. Here, we developed a system online simulation of extracellular recordings that allows for feedback from electrode positioning systems. The simulator is based on realistically reconstructed 3D neurons. The shape of the extracellular waveform is estimated from their morphology for every point on a 3D grid around the neurons. If a recording device is close to a neuron, the corresponding waveform for its spikes is calculated from that grid by interpolating the waveforms of the adjacent grid positions. This way we can simulate a realistic recording environment in which an unconstrained movement of electrodes and neurons and an interaction with a positioning system and online spike sorter is possible. ACKNOWLEDGMENTS This work was supported by DFG GRK 1589/1 and the German Federal Ministry of Education and Research (BMBF) with the grants 01GQ0743 and 01GQ0410 and by the Research Council of Norway (eScience,NeuroNor).