de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chasing the cell assembly

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84296

Wallace,  DJ
Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84010

Kerr,  JN
Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Wallace, D., & Kerr, J. (2010). Chasing the cell assembly. Current Opinion in Neurobiology, 20(3), 296-305. doi:10.1016/j.conb.2010.05.003.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BF6E-5
Abstract
Although we know enormous amounts of detailed information about the neurons that make up the cortex, placing this information back into the context of the behaving animal is a serious challenge. The functional cell assembly hypothesis first described by Hebb (The Organization of Behavior; a Neuropsychological Theory. New York: Wiley; 1949) aimed to provide a mechanistic explanation of how groups of neurons, acting together, form a percept. The vast number of neurons potentially involved make testing this hypothesis exceedingly difficult as neither the number nor locations of assembly members are known. Although increasing the number of neurons from which simultaneous recordings are made is of benefit, providing evidence for or against a hypothesis like Hebb‘s requires more than this. In this review, we aim to outline some recent technical advances, which may light the way in the chase for the functional cell assembly.