Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Conference Paper

Source Separation and Higher-Order Causal Analysis of MEG and EEG


Zhang,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Zhang, K. (2010). Source Separation and Higher-Order Causal Analysis of MEG and EEG. In 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010) (pp. 709-716). Corvallis, OR, USA: AUAI Press.

Cite as:
Separation of the sources and analysis of their connectivity have been an important topic in EEG/MEG analysis. To solve this problem in an automatic manner, we propose a twolayer model, in which the sources are conditionally uncorrelated from each other, but not independent; the dependence is caused by the causality in their time-varying variances (envelopes). The model is identified in two steps. We first propose a new source separation technique which takes into account the autocorrelations (which may be time-varying) and time-varying variances of the sources. The causality in the envelopes is then discovered by exploiting a special kind of multivariate GARCH (generalized autoregressive conditional heteroscedasticity) model. The resulting causal diagram gives the effective connectivity between the separated sources; in our experimental results on MEG data, sources with similar functions are grouped together, with negative influences between groups, and the groups are connected via some interesting sources.