de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Recent trends in classification of remote sensing data: active and semisupervised machine learning paradigms

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84133

Persello,  C
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bruzzone, L., & Persello, C. (2010). Recent trends in classification of remote sensing data: active and semisupervised machine learning paradigms. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2010) (pp. 3720-3723). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-BF46-E
Zusammenfassung
This paper addresses the recent trends in machine learning methods for the automatic classification of remote sensing (RS) images. In particular, we focus on two new paradigms: semisupervised and active learning. These two paradigms allow one to address classification problems in the critical conditions where the available labeled training samples are limited. These operational conditions are very usual in RS problems, due to the high cost and time associated with the collection of labeled samples. Semisupervised and active learning techniques allow one to enrich the initial training set information and to improve classification accuracy by exploiting unlabeled samples or requiring additional labeling phases from the user, respectively. The two aforementioned strategies are theoretically and experimentally analyzed considering SVM-based techniques in order to highlight advantages and disadvantages of both strategies.