English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain

MPS-Authors
/persons/resource/persons83787

Augath,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kirsch, S., Augath, M., Seiffge, D., Schilling, L., & Schad, L. (2010). In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain. NMR in Biomedicine, 23(6), 592-600. doi:10.1002/nbm.1500.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BF22-F
Abstract
In this study we demonstrate the feasibility of combined chlorine-35, sodium-23 and proton magnetic resonance imaging (MRI) at 9.4 Tesla, and present the first invivo chlorine-35 images obtained by means of MRI. With the experimental setup used in this study all measurements could be done in one session without changing the setup or moving the subject. The multinuclear measurement requires a total measurement time of 2 h and provides morphological (protons) and physiological (sodium-23, chlorine-35) information in one scanning session. Chlorine-35, sodium-23 and high resolution proton images were acquired from a phantom, a healthy rat and from a rat displaying a focal cerebral infarction. Compared to the healthy tissue a signal enhancement of a factor of 2.2 ± 0.2 in the chlorine-35 and a factor of 2.9 ± 0.6 in the sodium-23 images is observed in the areas of infarction. Exemplary unlocalized measurement of the invivo longitudinal and transversal relaxation time of chlorine-35 in a healthy rat showed multi-exponential behaviour. A biexponential fit revealed a fast and a slow relaxing component with T1,a = (1.7 ± 0.4) ms, T1,b = (25.1 ± 1.4) ms, amplitudes of A = 0.26 ± 0.02, (1–A) = 0.74 ± 0.02 and T2,a = (1.3 ± 0.1) ms, T2,b = (11.8 ± 1.1) ms, A = 0.64 ± 0.02, (1–A)  = 0.36 ± 0.02. Combined proton, sodium-23 and chlorine-35 MRI may provide a new approach for non-invasive studies of ionic regulatory processes under physiological and pathological conditions invivo.