de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Social interaction recognition and object recognition have different entry levels

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83877

de la Rosa,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83859

Choudhery,  R
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

de la Rosa, S., Choudhery, R., & Bülthoff, H. (2010). Social interaction recognition and object recognition have different entry levels. Talk presented at 33rd European Conference on Visual Perception. Lausanne, Switzerland.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BF06-F
Abstract
Objects can be recognized at different levels of abstraction, eg basic-level (eg flower) and subordinate level (eg rose). The entry level refers to the abstraction level for which object recognition is fastest. For objects, this is typically the basic-level. Is the basic-level also the entry level for the social interaction recognition? We compared basic-level and subordinate recognition of objects and social interactions. Because social interaction abstraction levels are unknown, Experiment 1 determined basic-level and subordinate categories of objects and social interactions in a free grouping and naming experiment. We verified the adequacy of our method to identify abstraction levels by replicating previously reported object abstraction levels. Experiment 2 used the object and social interaction abstraction levels of Experiment 1 to examine the entry levels for social interaction and object recognition by means of recognition speed. Recognition speed was measured (reaction times, accuracy) for each combination of stimulus type and abstraction level separately. Subordinate recognition of social interactions was significantly faster than basic-level recognition while the results were reversed for objects. Because entry levels are associated with faster recognition, the results indicate different entry levels for object and social interaction recognition, namely the basic-level for objects and possibly the subordinate level for social interactions.