Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Simulating Human Table Tennis with a Biomimetic Robot Setup

MPG-Autoren
/persons/resource/persons84097

Mülling,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84021

Kober,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mülling, K., Kober, J., & Peters, J. (2010). Simulating Human Table Tennis with a Biomimetic Robot Setup. In S. Doncieux, B. Girard, A. Guillot, J. Hallam, J.-A. Meyer, & J.-B. Mouret (Eds.), From Animals to Animats 11 (pp. 273-282). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BEC6-5
Zusammenfassung
Playing table tennis is a difficult motor task which requires fast movements, accurate control and adaptation to task parameters.
Although human beings see and move slower than most robot systems
they outperform all table tennis robots significantly. In this paper we
study human table tennis and present a robot system that mimics human
striking behavior. Therefore we model the human movements involved
in hitting a table tennis ball using discrete movement stages and the
virtual hitting point hypothesis. The resulting model is implemented on
an anthropomorphic robot arm with 7 degrees of freedom using robotics
methods. We verify the functionality of the model both in a physical realistic
simulation of an anthropomorphic robot arm and on a real Barrett
WAM.